
Developmental Cell

Article
Hair Follicle Dermal Stem Cells Regenerate
the Dermal Sheath, Repopulate the Dermal
Papilla, and Modulate Hair Type
Waleed Rahmani,1 Sepideh Abbasi,1 Andrew Hagner,1 Eko Raharjo,1 Ranjan Kumar,4 Akitsu Hotta,5 Scott Magness,6

Daniel Metzger,7 and Jeff Biernaskie1,2,3,4,*
1Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine
2Department of Surgery, Faculty of Medicine
3Alberta Children’s Hospital Research Institute
4Hotchkiss Brain Institute

University of Calgary, Calgary, AB T2N 4N1, Canada
5CiRA, Kyoto University, Kyoto 606-8507, Japan
6University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
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SUMMARY

The dermal papilla (DP) provide instructive signals
required to activate epithelial progenitors and initiate
hair follicle regeneration. DP cell numbers fluctuate
over the hair cycle, and hair loss is associated with
gradual depletion/atrophy of DP cells. How DP cell
numbers are maintained in healthy follicles remains
unclear. We performed in vivo fate mapping of adult
hair follicle dermal sheath (DS) cells to determine
their lineage relationship with DP and found that a
subset of DS cells are retained following each hair
cycle, exhibit self-renewal, and repopulate the DS
and the DP with new cells. Ablating these hair follicle
dermal stem cells and their progeny retarded hair
regrowth and altered hair type specification, sug-
gesting that they function to modulate normal DP
function. This work identifies a bipotent stem cell
within the adult hair follicle mesenchyme and has
important implications toward restoration of hair
growth after injury, disease, and aging.

INTRODUCTION

The adult mammalian skin and hair follicle (HF) contain several

distinct populations of stem cells that support considerable

capacity for regeneration. HF regeneration is dependent on

the interaction between epithelial precursors that reside in the

‘‘bulge’’ (Blanpain et al., 2004; Cotsarelis et al., 1990) and

specialized mesenchymal cells located at the base of the follicle

called the dermal papilla (DP). DP cells provide instructive sig-

nals required to induce epithelial bulge cell proliferation and

consequent initiation of anagen follicle growth (Jahoda et al.,

1984; Rompolas et al., 2012). Recent work has shown that DP

cells also influence the proliferative behavior of epithelial matrix
Developm
progenitors within the mature hair bulb, thereby indirectly modu-

lating hair growth (Clavel et al., 2012). Interestingly, although the

number of cells within the DP fluctuates over the course of the

hair cycle, it is not known how these cells are maintained or

replenished, particularly because cells within the DP only rarely

undergo mitotic division (Tobin et al., 2003).

Based on static measurements of DP cell number and prolif-

eration kinetics within the HF mesenchyme (Tobin et al., 2003), it

has long been speculated that a distinct precursor population

may exist within the surrounding dermal sheath (DS) (Jahoda,

2003), acting as a reservoir for new DP cells. Several studies

have provided indirect evidence to support this. First, microdis-

section and transplantation of in vitro expanded whisker-

derived DS cells suggested there may be functional overlap

between DS and DP cell populations (McElwee et al., 2003).

Second, a progressive increase in cells lacking the DP marker

Corin-cre:lacZ (Chi et al., 2010) suggested a heterogeneous

origin of DP cells. Finally, prospectively isolated Sox2-express-

ing cells exhibited self-renewal in vitro, generated multiple

dermal cell types following transplant in vivo, and reconstituted

both the DP and DS of newly formed HFs (Biernaskie et al.,

2009). Taken together, these experiments provided indirect

evidence of an adult hair follicle mesenchymal stem cell; how-

ever, definitive evidence of their location within this niche, the

functional lineage relationship between mesenchymal cell com-

partments (i.e., DP and DS) and the signaling that regulates their

behavior remains unclear.

Here, we hypothesized that the adult DS harbors a self-

renewing dermal stem cell that acts to repopulate the DS and

the DP of adult HFs. To test this, we utilized an inducible in vivo

genetic lineage tracing strategy to examine the fate of DS cells

in adult HFs. We found that the DS contains a self-renewing

population of cells that are retained within this mesenchymal

niche over several consecutive bouts of HF regeneration. At

the onset of each anagen growth stage, these hair follicle

dermal stem cells (hfDSCs) are mobilized to regenerate a new

DS and supply new cells to the DP. In vivo clonal fate mapping

showed that within a given hair cycle, individual hfDSCs
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generated progeny that repopulate both DS and DP. Finally, we

show that recruitment of hfDSC progeny into the DP is required

to maintain normal anagen onset and to permit formation of

large hair types.

RESULTS

Proliferation within the Adult Hair Follicle Mesenchyme
Is Largely Restricted to the DS Compartment
In order to determine the lineage relationship between cells

within the HF mesenchyme, we compared cell division within

the DP and DS compartments over the course of the first adult

hair cycle. Similar to previous reports (Tobin et al., 2003), quan-

tification of Ki67 staining at various time points revealed that the

HF mesenchymal cells are activated to divide at early anagen

and with diminishing proliferation through mid to late anagen

(Figures S1A–S1C available online). Comparison of cell prolifer-

ation within DS and DP compartments showed that mitotic activ-

ity was almost exclusively localized to cells within the DS

(Figures S1B–S1D). That is, 38% of DS cells were dividing during

early anagen and declined to 8.6% at mid-anagen and finally

2.1% at catagen. In contrast, 0.76% of DP cells per follicle

were found to be dividing and this was only observed during

early anagen stage (Figure S1D).

Prospectively Isolated DS Cells Reconstitute the Hair
Follicle Mesenchyme
Based on an overall lack of proliferation in the adult DP, we sur-

mised that the DS, and not DP, is the primary residence for a pu-

tative HF mesenchymal precursor. Our previous work showed

that prospectively isolated neonatal Sox2-expressing SKPs

(that includes both DP andDS cells) are capable of reconstituting

the DS and the DP in an ex vivo HF reconstitution assay (Bier-

naskie et al., 2009). Therefore, we postulated that if precursors

reside within the adult DS, then isolated DS cells should be

capable of reconstituting both DP and DS compartments of

the HF. Adult anagen DS cells can be exclusively distinguished

fromDP cells by their robust expression of alpha-smoothmuscle

actin (aSMA) (Jahoda et al., 1991). Therefore, to prospectively

isolate DS cells, we took advantage of an aSMAdsRed knockin

mouse (Magness et al., 2004) that expresses dsRed fluorescent

protein in DS cells (Figure 1A), but not in the dermal papilla or in-

terfollicular dermis. aSMA-expressing cells associated with the
Figure 1. Prospectively Isolated Dermal Sheath Cells Repopulate Both

(A) Adult P28 aSMAdsRedmouse backskin showing exclusive expression within H

do not express aSMAdsRed. Nuclei are labeled with Hoechst staining (blue).

(B) Adult P28 aSMAdsRed mouse backskin stained for ITGa8 (green) showing e

dermal sheath (red, arrows).

(C and D) FACS plots for prospective isolation of aSMAdsRed+ve CD34�ve ITGa8

(E) Schematic of patch assay of the ex vivo HF formation.

(F) Representative images of newly generated HFs within a graft after 2 weeks. Pro

(arrows), as well as the DP (arrows). Note that donor sheath cells recruited to the

(G) Prospectively isolated aSMAdsRed+ve dermal sheath cells are enriched for S

(H) aSMAdsRed+ve cells exhibit self-renewal over three passages.

(I) Quantification of spherical colony formation over three passages. n = 2 indepe

(J) Colonies generated from prospectively isolated dermal sheath cells contain

aSMAdsRed�ve (arrowhead).

(K) DS-derived self-renewing colony stained for Sox2 (green, arrowhead).

Scale bars represent 50 mm. See also Figure S1.
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vasculature were removed by CD34 exclusion and arrector pili

muscle were removed by excluding cells that express high levels

of a8-integrin (ITGa8), because ITGa8 expression in DS cells is at

relatively low levels (Figures 1B–1D). aSMAdsRed+ve ITGa8�ve

CD34�ve DS cells were isolated from adult anagen (postnatal

[P] 27) backskin by FACS (Figures 1C and 1D) and then grown

in vitro (for 48 hr) in the presence of a GFP-expressing lentiviral

vector in order to permanently label all isolated DS cells. On

day 3, GFP+veaSMAdsRed+veCD34�ve DS cells were then trans-

planted into the ‘‘patch assay’’ of HF formation (Biernaskie et al.,

2009; Zheng et al., 2005). After 12 days, many newly formed

follicles within the grafts contained GFP+veaSMAdsRed+ve DP-

derived cells, and closer inspection revealed GFP+ve cells within

both DS and DP compartments (Figure 1F) suggesting that

prospectively isolated DS cells are capable of multilineage

differentiation within the HF. Interestingly, although transplanted

GFP+veaSMAdsRed+ve cells integrating into the DS of new folli-

cles exhibited persistent aSMAdsRed expression, donor cells

integrating into the DP compartment showed an absence of

aSMAdsRed expression, suggesting that niche-dependent sig-

nals caused downregulation of aSMA expression and differenti-

ation to a DP cell fate.

We then asked whether prospectively isolated adult

aSMAdsRed+ve DS cells were capable of generating self-renew-

ing colonies in vitro (i.e., SKPs) (Biernaskie et al., 2009;

Fernandes et al., 2004). Indeed, aSMAdsRed+ve CD34�ve

cells were enriched 4-fold for primary SKPs formation when

compared to the aSMAdsRed�ve fraction (Figures 1G and 1I).

Moreover, isolated DS cells exhibited serial self-renewal

over two serial passages (Figures 1H and 1I), while the

aSMAdsRed�ve population showed negligible colony formation

(Figures 1G and 1I). Immunofluorescence analysis of tertiary

aSMAdsRed+ve CD34�ve-derived colonies showed that they re-

mained mitotically active (Figure 1J) and were able to generate

Sox2-expressing cells indicative of adult DP cells (Figure 1K).

Taken together, these results suggest that prospectively

isolated adult pelage DS cells generate SKPs when grown

in vitro, are capable of functionally reconstituting both the DS

and DP compartments of the HF and that local environmental

cues influence their differentiation/phenotype. Based on these

data, we hypothesized that the adult DS harbors a self-renewing

dermal stem cell that functions to generate new dermal cells at

the onset of each hair cycle.
DP and DS Compartments and Self-Renew In Vitro

F dermal sheath cells (red). DP is indicated by dashed lines. Note that DP cells

xclusive labeling of arrector pili muscle (arrowheads), with weak expression in

�ve dermal sheath cells from adult P28 aSMAdsred mice.

spectively isolated dermal sheath cells (green) reconstituted the dermal sheath

DP, no longer express aSMAdsRed. n = 3 transplant experiments.

KPs formation and retain expression aSMAdsRed expression (red).

ndent experiments.

Ki-67+ve dividing cells (green) that are both aSMAdsRed+ve (red, arrow) and
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Figure 2. Hair Follicle Dermal Stem Cells Proliferate to Regenerate the Dermal Sheath and Are Retained around the Dermal Papilla over

Consecutive Hair Cycles

(A) Low-magnification image of dorsal back skin 3 days following tamoxifen administration. Second anagen HFs from dorsal skin sections harvested 2–7 days

after tamoxifen or vehicle (sunflower seed oil) treatment.

(B) No YFP expression is observed following oil injection. ORS keratinocytes are labeled with K14 (red).

(legend continued on next page)
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The DS Contains Self-Renewing Precursors that Are
Retained over Consecutive Cycles
To test this hypothesis, we performed in vivo lineage tracing

experiments of DS cells within the adult mouse backskin.

Tamoxifen administration to aSMACreERT2:ROSAYFP mice

(referred to as aSMACreERT2:YFP) at postnatal day (P) 23/P24

(early anagen) resulted in permanent YFP expression exclusively

within cells comprising the HF DS (Figures 2A, 2C, and 2D) and

was observed in nearly all backskin HFs (on average 94.0%)

(Figure 2A; Table S1). YFP expression was not observed prior

to tamoxifen administration (Figure 2B) and although arrector

pili and vasculature-associated smooth muscle cells were

labeled, no aSMACreERT2:YFP+ve cells were observed in either

the DP, interfollicular dermis or epithelial components of the

HF (Figures 2C and 2E). YFP+ve DS cells can be observed lying

adjacent to K14-expressing keratinocytes of the outer root

sheath (Figures 2D and 2F).

We then examined the fate of YFP+ve sheath cells over the

course of the first adult hair cycle (fate mapping schedule is

shown in Figure 2G). Figure 2H shows multiple representative

follicles from each stage of the HF cycle following tamoxifen

application. One day following tamoxifen administration, a small

number of YFP+ve cells were observed in the early anagen DS fol-

lowed by a dramatic expansion of YFP+ve cells by mid/late ana-

gen (1 week posttamoxifen). It is important to note that with this

particular fate-mapping schedule, YFP-expression was limited

to the DS and never observed in the second anagen DP (Figures

2E and 2H, mid-late anagen), indicative of exclusive DS expres-

sion. As the transient region of the HF degenerated during cata-

gen (P36), YFP+ve DS cells appeared to collapse around the

degenerating epithelial portion of the follicle. To our surprise,

as the cycle progressed to telogen, a small number of these

initially labeled YFP+ve cells escaped cell death and were re-

tained around the periphery of the telogen DP (Figure 2H, second

telogen, 2I, and 2J). In almost every follicle examined, YFP+ve

cells were retained around the telogen DP and exhibited exten-

sive processes intercalating between DP cells (Figures 2I, 2J,

and S2C). We examined >120 second telogen HFs (n = 3 mice)

and found that on average, 3.4 ± 0.16 YFP+ve cells were retained

in each telogen follicle (ranging between 1 to 6 cells; Figure 3V).

This variance is likely due to reduced penetrance in adult follicles

at P23/24, but because we never observed more than six cells

(even when tamoxifen dose and duration were varied), we

concluded that the hair follicle dermal stem cell (hfDSC) ‘‘pool’’

is comprised of approximately three to six cells per follicle.
(C) aSMACreERT2:YFP expression is limited to DS, arrector pili and vascular sm

intrafollicular dermal cells are labeled in normal adult skin. ORS keratinocytes ar

(D) High-magnification image showing expression of YFP (green) in dermal shea

(E) aSMACreERT2:YFP+ve cells are not observed in the DP following tamoxifen a

(F) Dorsal view of HF showing location of YFP+ve cells within the dermal sheath s

(G) Experimental outline showing the HF cycle, tamoxifen administration and tim

(H) Representative images showing fate of aSMACreERT2:YFP+ve cells (green) at e

labeled at the onset of anagen and these are amplified to regenerate the derma

transient portion of the follicle and subsequently are lost. Subsequently, at teloge

periphery of the DP. K14 staining (red) shows ORS keratinocytes.

(I and J) Magnified images of aSMACreERT2:YFP+ve DS cells (green) surround

contacting multiple DP cells.

APM, arrector pili muscle; BV, blood vessels; DP, dermal papilla; DS, dermal shea

represent 50 mm (A, C–F, and H); 10 mm (I and J). Hatched lines outline the follic

Developm
Self-Renewing Dermal Stem Cells Regenerate the DS
and Contribute New Cells to the DP over Multiple Hair
Cycles
Todetermine the longevity and fateofDSprecursorsover consec-

utive regenerative cycles, aSMACreERT2:YFP mice were treated

with tamoxifen at P23/24 and then depilated at the subsequent

telogen (P45) and then monthly thereafter for three consecutive

months (experimental schematic, see Figure 3A). At each subse-

quent anagen stage, 95.1% ± 1.6% of all backskin HFs had

DS primarily comprised of YFP+ve cells (third anagen: 94.6% ±

2.4%, Figures 3C and 3F; fourth anagen: 91.9% ± 3.5%, Fig-

ure 3G; fifth anagen: 98.9% ± 0.3%, Figure 3L; see also Figures

S2A and S2B; Table S1) demonstrating hfDSC longevity and

capacity to serially reconstitute the DS over multiple cycles.

We then asked whether hfDSCs are capable of generating

functional DP cells? Despite the absence of YFP+ve cells in any

DP during the cycle immediately following tamoxifen application

(2nd anagen), when follicles progressed to third anagen we

found that 20.7% ± 2.8% of follicles contained YFP+ve (sheath-

derived) cells within the DP (Figures 3B, 3D, 3E, and S2A). In

addition to being situated throughout the DP, YFP+ve cells coex-

pressed the DP markers versican (Figures 3D and S3A), LEF-1

(Figure S3B), ITGa9 (Figure S3C), and noggin (Figure S3D).

Because ITGa9 and LEF-1 are not expressed in the adult DS,

this suggests that hfDSC progeny are recruited into the DP and

adopt a phenotype consistent with native DP cells. This was

further confirmed when we found YFP+ve progeny in the DP

also expressing Sox2 (Figure S3F). To determine whether

hfDSCs replenish the DP with new cells upon each regenerative

cycle, we extended the chase period over two additional hair

cycles. Remarkably, in each consecutive cycle, YFP+ve hfDSC

progeny had repopulated the anagen DP (fourth anagen, Figures

3G–3K; fifth anagen, Figures 3M and 3N) and were observed at

all depths of the DP niche.

We also asked whether the fate distribution of YFP+ve hfDSC

progeny changed over repeated hair cycles. The percentage of

YFP+ve DS cells per anagen follicle was unchanged between

third and fifth cycles (Figure 3P; p > 0.10), suggesting that

hfDSCs persist over multiple cycles and exhibit a similar recon-

stitution capacity with each cycle. Interestingly, we did observe a

slight but significant decline at fourth anagen. This may indicate

natural variations due to stochastic fate choices within each

follicle. In other words, differentiation to a DP versus a DS fate

may consequently impact the overall contribution to the DS, or

to subsequent cycles. This is addressed below.
ooth muscle cells. Importantly no other cells within the HF are labeled and no

e labeled with K14 (red).

th cells wrapping the HF. Keratin14 (red) labels ORS epithelial cells.

dministration. DP is outlined by dashed lines.

urrounding the ORS (K14 shown in red).

e course of fate mapping assessment.

ach stage of the adult HF cycle. Note that a small number of DS cells are initially

l sheath. Follicles undergo regression where sheath cells collapse around the

n, a small number (3–6) of aSMACreERT2:YFP+ve cells are retained around the

ing the telogen DP, 40 days after tamoxifen. Note the elaborate processes

th; IFD, interfollicular dermis. Nuclei are labeled with Hoechst (blue). Scale bars

le or DP. Arrowheads denote DS cells. See also Figure S2 and Table S1.
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To examine DP fates, we quantified the number of follicles

containing at least one YFP+ve cell within the DP and found a pro-

gressive increase with each subsequent regenerative cycle from

20.7% ± 2.8% at third anagen to 32.8% ± 3.8% at fourth anagen

(p < 0.05) and 37.3% ± 3.5% at fifth anagen cycle (p < 0.01) (Fig-

ure 3O). Similarly, the number of YFP+ve cells recruited into each

anagen DP was elevated with each subsequent hair cycle (Fig-

ure 3Q; third versus fifth anagen; fourth versus fifth anagen,

both p < 0.0001). Taken together, these data provide strong

evidence that dermal stem cells residing within the DS act as a

cellular reservoir to maintain/supplement DP cell numbers with

each new cycle.

In order to control for any confounding effect of repeated depi-

lation, we performed the same DS fate-mapping experiments in

naturally cycling animals (experimental schematic, Figure 3R).

Animals were pulsed with tamoxifen at P23/24 and chased until

8 months of age (at which time animals would have undergone at

least two additional hair cycles). Similar to our observation

following depilation, hfDSCs proliferate at the onset of natural

third anagen and their progeny reconstitute both DP and DS

compartments (Figure 3S). We then extended the chase period

for 7 months. Figure 3T (see also Figure S2D) shows a represen-

tative telogen follicle at 8 months of age (from an animal pulsed

with tamoxifen at P23/24) that has undergone multiple hair

cycles and retained four YFP+ve hfDSCs around the periphery

of the DP. Interestingly, when we quantified the average

numbers of YFP+ve hfDSCs per telogen follicle at P55 versus

P320 (8 months of age), we found no difference (Figures 3T,

3V, S2C, and S2D) further supporting the conclusion that there

is a fixed number of hfDSCs per follicle. Remarkably, anagen fol-

licles from 8-month-old skin contained YFP+ve cells in the DS

(Figure 3U) and within the DP (Figure 3U).

Telogen Hair Follicle Contains Distinct DP and Sheath
Compartments
Our fate mapping experiments spanning one complete adult hair

cycle revealed that a subset of aSMACreERT2:YFP+ve DS cells

were retained following completion of one cycle (P55) and

were always observed surrounding the perimeter of the DP (Fig-

ures 2H–2J). Confocal reconstructions of YFP+ve telogen follicles

from second, third, and fourth hair coat showed that these
Figure 3. aSMACreERT2:YFP+ve hfDSCs Regenerate the Dermal Sheath

(A) Schematic of long-term fate mapping of dermal stem cells over multiple, con

(B–Q) Fate of aSMACreERT2:YFP+ve hfDSCs over four consecutive (depilation

demonstrating that YFP+ve are recruited into the DP (B) and reconstitute the der

versican (red). (E and F) Representative images showing individual YFP+ve cells

(fourth anagen) YFP+ve dermal sheath cells (green) continue to regenerate the derm

three subsequent cycles (fifth anagen), YFP+ve dermal sheath cells (green) contin

DP (M). Magnified view of inset is shown in (N). (O) Quantification of YFP+ve DS ce

point, 600–800 anagen follicles analyzed per time point. *p < 0.05 and **p < 0.005.

repeated hair cycles. 60 anagen HFs were quantified, n = 3 mice per group. Rep

(R) Schematic of long-term fate mapping of dermal stem cells over multiple, con

(S) Whole mount images showing third anagen HFs containing YFP+ve (green) ce

(T) Telogen follicle from and 8-month-old mouse showing YFP+ve cells (green, ar

(U) Anagen follicle from an 8-month-old mouse showing that YFP+ve cells continu

arrowheads). DP cells are stained with versican (red).

(V) Quantification of aSMACreERT2:YFP+ve cells in HFs at second telogen versus

time point. Arrector pili muscle (APM) and blood vessels (BV). Scale bars repres

See also Figures S3 and S4.
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YFP+ve DS cells surround the DP after every cycle and remain

morphologically segregated from the DP cells. Immunostaining

of wild-type backskin with the DP marker estrogen receptor

alpha (ERa) at anagen onset revealed that the ERa-expressing

DP remains surrounded by Ki-67+ve ERa�ve cells (Figure S4A)

and occupies the same location as the aSMACreERT2:

YFP+ve cells retained over multiple cycles. At telogen, the

aSMACreERT2:YFP+ve cells can be distinguished from DP cells

by their unique expression of ITGa8 (Figure S2E). We then

administered tamoxifen in aSMACreERT2:YFP neonatal mice

(P3/4; first anagen) and then pulsed with the thymidine analog

EdU at the onset of second anagen (P20–P22). After a 6 hr chase

period, YFP+ve cells surrounding the DP colocalized with EdU

(Figure S4B), suggesting that the cells retained in this niche are

mitotically active in the subsequent cycle, whereas the DP cells

do not proliferate. Taken together, these data suggest that the

DS contains self-renewing cells and, despite its close proximity,

remains functionally distinct from the DP at all stages of the

regenerative cycle.

hfDSC Progeny Exit the DP at Catagen Either to
Reintegrate into the Stem Cell Niche or to Undergo Cell
Death
The lack of YFP+ve hfDSC progeny within the telogen DP sug-

gested that DP cells were actively exiting the DP during HF

regression. Because, during homeostasis we do not observe

YFP+ve cells outside the hair follicle, we assumed that exiting

DP cells would either undergo apoptosis or possibly reenter

the stem cell pool. To determine the fate of hfDSC progeny within

the DP after hair follicle regression, we costained adult skin

for the Wnt effector LEF1 (that expressed in the nuclei of DP

cells, but not in the DS or dermal cup region that is defined as

the lower DS, distal to Auber’s line) and ITGa8 (that specifically

marks the DS and dermal cup, but not the DP). Serial imaging

of hair follicles transitioning from late anagen to telogen (Figures

4A–4D) showed that YFP+ve cells in the DP begin to detach, mov-

ing distally away from the LEF1+ve DP aggregate. During this

transition, they downregulate LEF1 expression and upregulate

ITGa8, suggesting adoption of a DS fate (Figures 4B and 4C, ar-

rows). Interestingly, as emigration proceeds, the thickness of the

dermal cup increases and the appearance of an intermediate
and Repopulate the Dermal Papilla

secutive (depilation-induced) hair cycles.

-induced) hair cycles. (B and C) Whole mount images of third anagen HFs

mal sheath (C). (D) YFP+ve cells recruited to the DP coexpress the DP marker

comprising the DP (E) and dermal sheath. (G–K) After two subsequent cycles

al sheath (G) and also contribute cells to the DP (H–K, arrowheads). (L–N) After

ue to regenerate the dermal sheath (L) and exhibit extensive recruitment to the

lls recruited to the anagen DP over consecutive hair cycles. n = 3 mice per time

(P and Q) Fate distribution of YFP+ve cells within anagen DS (P) and DP (Q) over

eated-measures ANOVA, Bonferroni post hoc ***p < 0.0005.

secutive (naturally occurring) hair cycles.

lls comprising the dermal sheath and DP.

rowheads) surrounding the DP.

e to regenerate the dermal sheath and are supplement cells to the DP (green,

telogen at 8 months of age. n = 3 mice per time point, 20 follicles analyzed per

ent 25 mm.
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Figure 4. hfDSCs Progeny Emigrate out of

the Dermal Papilla during Catagen and

Reintegrate into the Dermal Cup

(A–D) Fate of aSMACreERT2:YFP+ve hfDSC prog-

eny (yellow) in DP from late anagen to telogen. A)

YFP+ve cells in DP coexpress LEF1 (red, arrows),

but do not express integrin-a8 (Itga8; cyan). (B) At

catagen V, YFP+ve cells (yellow) have begun to

move out of the DP and into the dermal cup where

they exhibit a gradual downregulation of LEF1

expression (red, arrows) and begin to express

Itga8 (cyan, arrowheads). (C) At catagen VI, a

single YFP�ve cell has detached from the DP, but

still expressing LEF1 (red) and is now positive for

Itga8 (cyan) as it transitions into the dermal cup. (D)

A second telogen follicle showing YFP+ve cells

(yellow, arrows) that have reassembled within the

hfDSC niche surrounding the DP. Coexpression of

the DP marker LEF1 (red) and the DS-specific

marker Itga8 (cyan), suggests that at least some

resident DP cells are retained and reintegrate into

the hfDSC niche. A third YFP+ve hfDSC (yellow,

arrowhead) shows Itga8 expression (cyan), but is

negative for LEF1.

(E–I) Apoptotic cell death within the hair follicle

mesenchyme during regression. (E) Catagen I–II,

(F) Catagen IV–V, (G) Catagen VI, (H) Catagen VII,

and (I) Catagen VIII shows YFP+ve cells (yellow)

exiting the DP do not undergo apoptotic cell death,

but appear to re-integrate into the hfDSC pool.

Apoptotic cell death indicated by cleaved cas-

pase-3 (red, arrowheads) is observed in distal-

most mesenchymal cells, but not in the DP, or in

the intermediary cells between the DP and the

distal mesenchyme.

All nuclei are stained with Hoechst (white or blue).

Scale bars represent 20 mm. See also Figure S5.
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population between the DP and the DS can be observed (Figures

4B, 4C, 4F, and 4G). When the follicle finally transitions into tel-

ogen, all YFP+ve cells express ITGa8 and reorganize around

the Lef1+ve DP (Figure 4D). Interestingly, a subpopulation of

YFP+ve ITGa8+ve cells faintly expresses Lef1 (Figure 4D, arrows)

suggesting that hfDSC progeny within the anagen DP can sur-

vive catagen and reintegrate into the stem cell niche at telogen.

Previous work suggested that DP cell numbers fluctuate over

the course of the hair cycle and at catagen, apoptotic cells are

observed at the distal tip of the follicle bulb (Tobin et al., 2003).

To determine whether emigrating YFP+ve DP cells were undergo-

ing apoptotic cell death, we stained catagen aSMACreERT2:

ROSAYFP skin for cleaved caspase-3. First, we did not observe

any caspase-3+ve cells in the DP at any stage, consistent with
550 Developmental Cell 31, 543–558, December 8, 2014 ª2014 Elsevier Inc.
previous reports (Lindner et al., 1997;

Tobin et al., 2003; Weedon and Strut-

ton, 1981). Second, YFP+ve caspase-

3+ve mesenchymal cells were almost

exclusively observed at Catagen VI–VIII

in the distal-most end of the DS (Figures

4G and 4H, arrowheads). At this stage

of catagen, aSMACreERT2:YFP+ve cells

had begun to vacate the DP, forming an

intermediate mesenchymal layer, but we
did not detect apoptotic cells within this region. Taken together,

these data confirm that a subset of DP cells actively exit the DP

at catagen, and although there is active apoptotic cell death

within the distal DS, at least a subset of these emigrating DP cells

escape cell death and reintegrate into the telogen hfDSC nice

surrounding the DP.

hfDSCs Are Activated during Early Anagen
Following administration of EdU at P20–P22 (transition from tel-

ogen to anagen) we found that 81.0% ± 1.2% of YFP+ve DS cells

were also EdU+ve (including those cells in the dermal cup) when

examined at P30 (full anagen; Figures S4C andS4E, red bars). As

well, on average 38.3% ± 3.0% of the YFP+ve cells that were

retained in each follicle following regression to second telogen
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were EdU+ve (P56; Figures S4D and S4E, red bars). These cells

went on to generate the subsequent DS and were readily

observed in the dermal cup of the subsequent third anagen fol-

licles (Figures S4F and S4G). Notably, following two complete

hair cycles post-EdU pulse, bright EdU+ve cells were only

observed in the dermal cup and in the DP (indicating few or no

divisions), while proximal DS cells exhibited weak or no EdU

signal, indicating a dilution of the label through multiple cell divi-

sions (Figure S4F). To determine whether the YFP+ve DS cells

proximal to the dermal cup were a transit amplifying population,

we delayed the initial EdU pulse until P24–P25. Indeed, only

38.8% ± 1.9% of YFP+ve DS cells, at P30 anagen, were found

to be EdU+ve (Figures S4C and S4E, blue bars). At second telo-

gen, retained YFP+ve cells were only rarely EdU+ve (4.9% ±

1.5% of 60 follicles) (Figures S4D and S4E) suggesting that pre-

cursors within the DS are hierarchically organized, and hfDSCs

are transiently activated to proliferate and temporally coordi-

nated following activation of epithelial bulge/secondary germ

cells at the onset of anagen.

Interestingly, EdU given at P20–P22 followed by an 8 day

chase resulted in a small number of DP cells that were EdU+ve

(Figure S4C) and similarly when extended to third anagen (Fig-

ure S4F). However, if the chase period was shortened to 6 hr,

all EdU+ve cells were restricted to the cells directly surrounding

the DP and never found in the DP (Figure S4B), suggesting

that the rare Ki67+ve DP cells we observed previously (Fig-

ure S1D) were likely hfDSC progeny that had migrated into the

DP compartment.

hfDSCs Are Bipotent, Replenishing Both Hair Follicle
Dermal Sheath and Papilla
In order to understand whether single hfDSCs exhibit bipotency

within the HF (i.e., contribution to both DS and dermal papilla

compartments), we generated aSMACreERT2:ROSAconfetti

mice. Following the administration of tamoxifen (experimental

schematic shown in Figure 5A), the confetti reporter allows sto-

chastic expression of one of four possible fluorophores (nuclear

GFP, RFP, CFP, and YFP) within Cre-expressing cells. To

enhance our reporter efficiency, we generated homozygote

confetti mice (aSMACreERT2:ROSAconfetti/confetti) that generates

ten different color combinations. Administration of tamoxifen at

P23/24 in aSMACreERT2:ROSAconfetti/confetti mice resulted in

robust labeling of DS cells 4 days later (Figure 5B; mid anagen),

with each follicle containing numerous labeled cells expressing

various colors. When the chase period was extended to allow

follicles to regress to second telogen (P55), 77.5% ± 4.3% of

labeled follicles contained only a single fluorescent cell (hfDSC)

surrounding the DP (n = 3 mice, 115 follicles; Figure 5C). Thus,

the overall probability that two cells are labeled (22.5%) and

that the second cell is the same color as the first (1/10 chance)

is 2.2%. Based on our sample size (240 follicles total from n =

4 mice) inclusion of these relatively rare events would not be ex-

pected to significantly impact our fate analysis. Based on this,

we performed fate analysis of HFs containing single color hfDSC

clones in order to determine their in vivo fate potential and

function. Animals were depilated to induce and synchronize HF

regeneration and then follicles were examined at the middle of

third anagen or at the subsequent third telogen. Out of 240 folli-

cles examined, 78.6% ± 2.8% of clones were mitotically active,
Developm
generating new cells that resided within the DS, DP, and dermal

cup (the putative DSC niche) (Figures 5D–5F). To our surprise, we

also observed a subset of third anagen clones (21.4% ± 0.3%)

that failed to generate any progeny and remained as a single

hfDSC within the dermal cup (Figure 5G). We interpreted these

mitotically inactive hfDSCs to possibly represent a quiescent

(reserve) population.

Our aSMACreERT2:ROSAYFP fate mapping experiments and

EdU pulse-chase experiments suggested that the putative

hfDSC niche in anagen follicles was in the dermal cup region.

Based on this, we asked whether clones exhibited hfDSC self-

renewal and expansion of the stem cell pool residing within

the dermal cup. Indeed, examination of third anagen follicles

in aSMACreERT2:ROSAconfetti mice (240 follicles; n = 4 mice)

showed that 73% of clones maintained at least one hfDSC in

the dermal cup (Figure 5I) in addition to generating differentiated

progeny in either DP or DS compartments. Quantification of

these differentiated fates revealed that 87.4% ± 1.9% of clones

generated DS cells only (Figure 5F, red clone), 7.1% ± 1.2%

generated both DS and DP (Figures 5D and 5F, yellow clone),

and 5.3% ± 3.0% generated only DP cells (Figure 5E). Extending

the chase period to third telogen also revealed single color

clones were retained around the periphery of the telogen DP

(Figure 5H) (as observed in our aSMACreERT2:YFP fate mapping

experiments), consistent with a long-term repopulating hfDSC.

Interestingly, 43.9% ± 9.6% of clones exhibited an expansion

of the hfDSC pool (>1 cell within the dermal cup regions),

consistent with the idea that hfDSCs are capable of symmetric

self-renewal (Figure 5I). Paradoxically, other hfDSC clones

(19.8% ± 7.2%) had vacated the dermal cup region and had

taken residence in the DS or DP (Figures S5A and S5B), suggest-

ing that a subset of hfDSCs undergo symmetric differentiation

and exit the stem cell pool. Taken together, these results support

the notion that self-renewing, bipotent hfDSCs reside within the

HF dermal cup and function to regenerate the DS and DP with

each new hair cycle.

hfDSCs Recruitment to the DP Is Associated with Hair
Type
Previous work has demonstrated that hair type is correlated

with an increased number of cells within the DP (Alcaraz

et al., 1993; Elliott et al., 1999; Van Scott and Ekel, 1958). In

mice,�20% of follicles that generate a zigzag hair in the primary

hair coat, switch to generating a larger secondary hair type

during second anagen and these larger hair types require an

increased number of DP cells (Chi et al., 2013). This switching

occurs with greatest frequency in the second anagen cycle.

Interestingly, when we treated aSMACreERT2:YFP neonatal

pups with tamoxifen at P3/4 and examined the DP at second

anagen (P28), we noticed a significant increase in recruitment

of YFP+ve cells into the DP (Figure 6A) relative to the degree

of recruitment at later cycles (fate mapping from P3/4 to third

anagen) suggesting that recruitment into the DP may be func-

tionally linked to hair type switching. Because our fate mapping

data showed that cells from the adult DS are actively recruited

into the DP, we postulated that hfDSCs function to maintain/

supplement cell numbers within the DP, necessary for either

inductive capacity or to modulate the type of hair that is gener-

ated. To test this, tamoxifen was applied to aSMACreERT2:YFP
ental Cell 31, 543–558, December 8, 2014 ª2014 Elsevier Inc. 551



Figure 5. Clonally Identified hfDSCs Exhibit Multiple Cell Fates In Vivo

(A) Tamoxifen was administered to aSMACreERT2:ROSAconfettimice at P23–P24 and then dermal sheath cell fates were assessed at various stages of subsequent

hair cycles.

(legend continued on next page)
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mice at P3/4 to label hfDSC and their progeny (Figure 6B), indi-

vidual backskin follicles were dissected at P28–P30 (anagen),

and the frequency of YFP+ve cell recruitment to the DP and

the type of hair generated in both first and second hair coat

for each follicle was documented. Indeed, the likelihood of

YFP+ve cells present within the DP was significantly elevated

in follicles that had undergone a hair type switch (Figure 6F).

Quantification of 300 follicles (n = 3 mice, 100 follicles from

each mouse) indicated that 86.3% ± 4.1% of follicles generating

a larger hair type in the second hair coat (switch from zigzag to

awl/auchene) contained YFP+ve cells in the DP. In contrast, fol-

licles that did not switch (zigzag to zigzag) showed only 61.0% ±

3.0% recruitment (p = 0.0084; Figures 6C–6F), suggesting that

recruitment of hfDSC progeny into the DP may be required to

support generation of larger hair types.

Indeed, quantification of hair follicles within each revealed that

hair type distribution is altered following repeated depilation; that

is, small zigzag hairs were reduced in frequency and larger awl

hair increased by 2-fold (Figure 6G). Interestingly, these results

parallel our earlier experiments that found a persistent increase

in recruitment of YFP+ve sheath cells into the DP with each

(depilation-induced) hair cycle (Figures 3O and 3Q). These data

strongly support the idea that hfDSC progeny supplement the

DP to support generation of larger hair types.

Depletion of hfDSCs Delays Anagen Onset and Alters
Hair Type Specification
To test this directly, we generated mice expressing the Diph-

theria toxin receptor (DTR) specifically within the HF DS, in order

to genetically ablate hfDSCs and their progeny and then

asked how this might impact HF regeneration. aSMACreERT2:

ROSAeYFP:ROSAiDTR mice were administered tamoxifen at P3/

4 to activate expression of DTR and YFP in DS cells. Immuno-

staining for DTR expression in first telogen follicles shows that

DTR is present in YFP+ve hfDSCs (Figures S6A–S6C). To elimi-

nate confounding effects of DTR-induced killing of aSMA-ex-

pressing cells within the vasculature, we grafted skin from adult

aSMACreERT2:YFP:iDTR+/� and aSMACreERT2:YFP:iDTR�/�

mice to nude mice (Figure 7A shows experimental schematic).

Skin grafts were allowed to heal for 1 month (that is sufficient

to allow host revascularization to occur within the graft) (Capla

et al., 2006; Matsuo et al., 2007) by which time follicles had pro-

gressed to telogen. DT (Diphtheria toxin) was administered for

3 days prior to depilation of the graft (to synchronize hair regen-

eration) and continued for 7 days following in order to kill hfDSCs

during the transition from telogen to anagen. Gross observation

of grafts 3 weeks later revealed that DT-treated DTR+/� grafts

exhibited a retarded entry to anagen, followed by delayed ana-

gen progression. In contrast, PBS-treated DTR+/� grafts had
(B) Four days post-tamoxifen, mosaic expression was observed with all four fluo

(C) Following regression, telogen follicles retained one or two cells around the p

telogen follicle.

(D–H) Analysis of fates in the subsequent hair cycle (third anagen). Single clonal d

(D, yellow clone; F, yellow clones). (E) hfDSC generating multiple a second stem c

cells only (F, red clone). (G) Quiescent hfDSC clone (cyan). (H) Two aSMACreERT

that adult hfDSCs are retained within their niche after two complete regenerative

(I) Frequency distributions for hfDSC behavior between second and third anagen.

bars represent 50 mm (A–C and E–I); 25 mm (D and J).
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completed anagen and progressed to catagen/telogen by

16 days (Figure 7B). Examination of YFP expression showed a

marked reduction in YFP+ve cells following DT treatment (Fig-

ure S6D). As well, aSMACreERT2:YFP:iDTR�/� grafts treated

with DT exhibited similar growth to PBS-treated grafts. Quantifi-

cation of hair length from hairs plucked from each condition

showed that depletion of hfDSCs and/or their progeny resulted

in a reduction in hair length (Figures 7C–7E) of both zigzag and

awl/auchene hairs (p < 0.01; at both pre- and posttime points

100 hairs/graft were analyzed, n = 9 DT-treated DTR+/�, n = 4

PBS-treated DTR+/� and DT-treated DTR�/�).
Based on our finding that recruitment of hfDSC progeny is

involved in supplementing new cells to the DP to support the

formation of larger hair types, we asked whether depletion of

hfDSCs altered the distribution of hair types generated within

each graft. Analysis of 100 hairs from experimental and control

grafts (n = 9 DT-treated DTR+/� grafts; n = 4 PBS-treated

DTR+/� and DT-treated DTR�/� grafts) revealed that the fre-

quency of each hair type was equivalent in all grafts prior to depi-

lation (p > 0.10; Figures 7F and 7G). Hair depilation in control

grafts resulted in a slight decline in zigzag hairs and a concomi-

tant modest increase in awl/auchene hairs (p > 0.10; Figures 7F

and 7G). In contrast, administration of DT at the onset of anagen

actually reversed this effect. That is, depletion of hfDSCs

reduced the generation of awl/auchene hairs in favor of zigzag

hairs (p = 0.02; Figures 7F and 7G). This result further supports

the conclusion that hfDSCs supplement the DP with cells to

modify the inductive signaling required for normal anagen induc-

tion and hair type specification.

To determine whether this phenotype was directly related to a

reduction in DP cells, we measured the total number of DP cells

per follicle in DT-treated DTR+/� and PBS-treated DTR�/�grafts.
Quantification of follicles containing YFP+ve cells confirmed there

was �23% reduction in the number of follicles that contained

YFP+ve cells following DT treatment (Figure 7H) and �20%

reduction in the number of DP that contained YFP+ve cells (Fig-

ure 7H), suggesting a reduction in hfDSC progeny into the DP.

Interestingly, however, there was no difference in the average

number of DP cells per follicle (Figure 7I), most likely due to

compensation from DTR�ve hfDSCs, which would be expected

of an active stem cell population. Taken together, genetic abla-

tion of hfDSCs at onset of anagen results in at least a transient

disruption in hair growth and altered hair phenotype.

DISCUSSION

Here, we provide direct in vivo evidence for the existence of a

self-renewing dermal stem cell that resides in the HF mesen-

chyme. HF dermal stem cells (hfDSCs) are long-lived and
rophores expressed throughout the dermal sheath.

eriphery of the DP. Representative single RFP+ve cell is shown within second

ermal stem cells exhibit bipotency, contributing to both dermal sheath and DP

ell within the cup and one DP cell (yellow clone). (F) hfDSC clone generating DS
2:ROSAconfetti clones (yellow and red) observed in third telogen, demonstrating

hair cycles.

n = 4mice, 240 follicles were analyzed in total. Arrector pili muscle (APM). Scale
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Figure 6. hfDSCs Function to Repopulate

the DP and Are Required for Hair Type

Specification

(A) Quantification of YFP+ve cell recruitment into

the DP over consecutive natural hair cycles

(tamoxifen applied at P3–P4, first anagen). Second

anagen showed a 3-fold increase in recruitment

relative to third anagen. n = 3 mice, 400–500 folli-

cles. ***p < 0.0001.

(B) Experimental schematic showing tamoxifen

application in neonatal (P3–P4) aSMACreERT2:

YFP mice, followed by HF analysis at P30,

following appearance of the second hair coat.

(C) Image of two (adjacent) adult second

anagen HFs dissected from skin of P30

aSMACreERT2:YFP mice that were administered

tamoxifen at P3 and P4.

(D and E) Higher magnification images showing

YFP+ve cell fates. E) YFP+ve cells were recruited

into the DP of the follicle that generated a larger

(auchene) secondary hair, whereas follicles that do

not exhibit hair type switching (D) and generate a

second small (zigzag) hair fiber do not contain

newly recruited YFP+ve cells.

(F) Frequency of YFP+ve cell recruitment at second

anagen in follicles generating similar (zigzag to

zigzag) or larger (zigzag to awl/auchene) second-

ary hair fibers. n = 3 mice, 100 follicles from each.

**p = 0.0084.

(G) Quantification of different hair types following

repeated depilations shows a sustained increase

frequency of awl hairs at the expense of zigzag

hairs with each depilation. n = 3 mice, 100–200

follicles per mouse. *p < 0.05. Scale bar represents

50 mm.
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bipotent, functioning to repopulate the DP and DSwith each new

regenerative cycle.

Due to the structural changes that occur during HF regenera-

tion, the hfDSC niche is dynamic. At anagen, bipotent contribu-

tion to DP and DS coincided with residence of labeled cells in the

dermal cup. This is consistent with previous work in which DS

cells microdissected from distal, but not proximal regions of

the HF, were able to reconstitute both DP and DS compartments

ex vivo (McElwee et al., 2003). Interestingly, despite recruitment

of hfDSC progeny to all proximal-distal depths of the anagen DP,

at telogen YFP+ve cells were only observed surrounding the pe-
554 Developmental Cell 31, 543–558, December 8, 2014 ª2014 Elsevier Inc.
riphery of the ERa+ve DP. This highlights

the dynamic nature of the hfDSC niche

and the active cellular reorganization

that occurs within it during HF regression.

Indeed, during catagen, hfDSC prog-

eny within the DP actively segregate

from the DP, downregulate DP markers

(LEF1), upregulate DS markers (ITGa8),

and reintegrate within the hfDSC niche

surrounding the telogen DP. Although

there is active cell death within the

DS, this seems to occur distal to cells

emigrating from the DP. Overall, this sug-

gests that some hfDSC-derived DP cells
may not be entirely committed but are able to resume their

hfDSC function when exposed to a permissive microenviron-

ment (i.e., in the dermal cup). We propose that recruitment of

hfDSC progeny into the DP niche may actually provide protec-

tion from the ongoing cell death that occurs outside the DP

during catagen. Future experiments using a DP-specific, induc-

ible genetic marker (that is not expressed in the dermal cup) will

be required to definitively determine whether emigrating DP cells

are able to reacquire bipotent hfDSC function.

hfDSCs exhibit various possible fates within a given hair

cycle. Our transplantation studies showed that prospectively



Figure 7. Depletion of hfDSCs Results in

Delayed Hair Growth and Prevents Forma-

tion of Larger Hair Types

(A) Experimental schematic of hfDSC ablation

within aSMACreERT2:ROSAiDTR skin grafts.

(B) aSMAcreERT2:YFP:ROSAiDTR skin grafts from

mice treated with PBS or DT.

(C) Representative images of zigzag hairs plucked

from PBS versus DT-treated DTR+/� grafts.

(D) Quantification of zigzag hair length within grafts

before and after depilation-induced hair regrowth

(following progression to telogen). Zigzag length

was stunted following DT treatment of DTR+/�

grafts (paired t test, p = 0.0002), but was un-

changed in control groups (p = 0.97).

(E) Quantification of awl/auchene hair length

(paired t test, DT-treated DTR+/� p = 0.01; control

grafts p = 0.69). Control grafts n = 4; DT grafts

n = 9; 100 hairs/graft were analyzed.

(F andG) Quantification of zigzag and awl/auchene

hair frequency in grafts before and after depilation-

induced hair regrowth. Control grafts resulted in

a slight decrease in zigzag hairs but a modest

increase in awl/auchene hair (pre versus post). DT-

treatment on DTR+/� grafts reversed this effect,

increasing zigzag hairs (pre versus post, p = 0.02)

and concomitantly reducing the frequency of awl/

auchene hairs (p = 0.02). Hair types frequencies

did not differ between groups prior to depilation.

(H) Percent follicles containing YFP+ve cells in

aSMAcreERT2: YFP:iDTR+/� skin grafts treated

with either PBS or DT. DT treatment reduced the

frequency of YFP+ve cells in the DS and in DP. Data

are mean ± SEM. n = 3 grafts per group, 500

follicles counted from each graft.

(I) Quantification of total DP cell number per follicle

aSMAcreERT2:YFP:iDTR+/� skin grafts following

DT or PBS treatment. n = 3 grafts per group, 50

follicles per graft. Scale bar represents 500 mm.

*p < 0.05, ***p < 0.0005. NS, nonsignificant.

See also Figure S6.
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isolated DS cells were capable of reconstituting both DS and

DP compartments. As well, they could be grown at clonal den-

sity in vitro as SKPs, over multiple passages and generated

Sox2+ve aSMAdsRed�ve cells, consistent with a DP cell pheno-

type (Biernaskie et al., 2009; Driskell et al., 2009). Clonal fate

mapping of individual (telogen stage) hfDSCs confirmed their

bipotency, with single clones readily contributing cells to both

DP and DS compartments. hfDSCs appeared to be biased to

generating DS, which is not surprising because reconstitution

of a new DS with each cycle would require the greatest number

of cells. There is also a notable balance of stem cell loss (differ-

entiation and exit from the hfDSC niche) versus expansion of

the hfDSC pool. Although our data cannot definitively determine

the mode of cell division that hfDSCs undertake, indirect
Developmental Cell 31, 543–558,
evidence demonstrating an expansion

of the hfDSC pool (43.9% of active sin-

gle cell clones) suggests that hfDSCs

self-renew via symmetric cell division.

In parallel, depletion of the stem cell

pool, exemplified by a loss of labeled
clones in the hfDSC niche, would likely also occur by symmetric

differentiation, which we also observed in 19.8% of active

clones. Future studies using in vivo live imaging will seek to

clarify this further.

Interestingly, our clonal analysis also revealed that a subset of

hfDSCswithin the dermal cup appear to be quiescent (mitotically

inactive over the course of one hair cycle). This is in line with our

long term EdU pulse chase experiments where we regularly

observed a small number of EdU+ve cells within the dermal cup

even following two complete cycles in which most other hfDSCs

have diluted the label. These data are consistent with the idea

that hfDSCs are bipotent and exist as both active and quiescent

stem cells, as has been described for epithelial stem cells in HF

bulge and intestine (Li and Clevers, 2010).
December 8, 2014 ª2014 Elsevier Inc. 555
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Our lineage tracing strategy also revealed a fascinating con-

nectivity within the DP niche, with labeled hfDSC progeny elab-

orating long cytoneme-like processes that extend through the

depth of the DP and in some cases into the adjacent melanocyte

niche. This highlights a previously unappreciated connectivity

between mesenchymal compartments and identifies a physical

substrate by which hfDSCs and their progeny within the DP

communicate with more remote or functionally distinct regions

of the DP, matrix cells and melanocytes, as opposed to local

communication between neighboring cells. Indeed, a modula-

tory role for DP cells on melanocytes via b-catenin signaling

has already been reported (Enshell-Seijffers et al., 2010). Their

unique location and close proximity to DP cells (at all stages

of the hair cycle) may also allow hfDSCs to act as cellular

intermediate transmitting extrafollicular signals into the DP.

Future studies examining the function of these morphological

processes, identification of signals relayed between these

connections and the molecular consequence of adding new

(sheath-derived) cells to the DP will be critical toward a better

understanding of the inductive process.

Although the function of the proximal dermal sheath (along the

hair shaft) remains poorly understood, our data show that there

are discrete functional regions within the DS, and hfDSCs can

repopulate both the DS and the DP with new cells. Recent

work (Chi et al., 2010) provided evidence that DP cell number

is directly related to the follicle’s capacity to initiate new hair

growth; as DP cell numbers decline below a specific threshold,

HFs are unable to initiate a new hair cycle whereas follicles re-

taining a sufficient number of DP remain competent to reenter

growth phase. The authors suggested that the HF exploits an

intrinsic mechanism to restore both DP cell number and sustain

normal hair growth. Our data strongly supports this idea and

show definitively that new DP cells are sourced from self-renew-

ing, bipotent hfDSCs residing in the dermal cup.

Our results show that transient ablation of hfDSCs is sufficient

to retard anagen progression and alter hair type. Our data

likely underestimate the functional significance of hfDSCs

to adult hair follicle regeneration. First, expression of DTR

(like aSMACreERT2:ROSAYFP) is not expressed in all telogen

hfDSCs and so those escaping DT-mediated ablation

(aSMACreERT2:ROSAiDTR�ve cells) may be able to compensate

by replacing ablated cells; this is consistent with the observed

delay (but not cessation) of hair follicle growth and may also

explain the sustained DP cell numbers, even following DT treat-

ment. Native DP cells are not affected by DT treatment and

because we only see a small number of cells recruited to the DP

with eachcycle (�1–4cells), it is not surprising that theDP remains

competent to induceanagen followingDTtreatment.Alternatively,

the impairedgrowthandaltered hair typeobserved in the absence

of significant DP loss could also bea consequenceof impairedDS

function (irrespective of any effects on theDP), becauseDT-medi-

ated killing most notably impacted differentiated progeny in the

DS. Future experimentswill need to be done to clarify the function

of the DS specifically. Last, it has been proposed that hair type

specification is governed by intrinsic features of DP cells within

each follicle type (Driskell et al., 2009). Although this may be the

case in development, our data argue against such a mechanism

in adult hair follicle regeneration and support the assertion that a

putative molecular threshold within the DP may be overcome
556 Developmental Cell 31, 543–558, December 8, 2014 ª2014 Elsev
(Chi et al., 2013) or modulated by incoming hfDSC progeny. We

also propose that cellular connectivity between DP cells and

hfDSCs residing in the dermal cup as well as the dermal sheath

may also influence matrix epithelial progenitors to alter hair type.

Related to this, a recent study reported that laser ablation of

the DP renders the HF incapable of regeneration (Rompolas

et al., 2012) and begs the question as to why the DP was not

regenerated by hfDSCs? Because laser ablation was performed

on Lef1RFP+ve DP cells at telogen, when hfDSCs are directly

apposed to the DP and expressing Lef1, it is possible that

hfDSCs were also killed with this lesion. Similarly, genetic deple-

tion of DP cells using Corin-Cre (Chi et al., 2013) may also inad-

vertently kill hfDSCs because corin is also expressed in the hair

follicle DS and dermal cup.

Future studies examining ablation of DP, at anagen or catagen,

when there is greater physical separation between the DP and

hfDSC compartments, will be important toward understanding

the extent of hfDSCcontribution toDPhomeostasis and function.

In summary, we provide evidence for the existence of a dermal

stem cell that resides in the hair follicle DS. Our data clarify the

functional lineage relationship between the DS and the DP and

demonstrates a critical role for hfDSCs in adult HF regeneration.

These data also provide one of the first in vivo demonstrations of

a mesenchymal stem cell contributing directly to adult tissue

regeneration. Human clinical studies suggest that gradual DP

cell loss and consequent dysfunction is the primary contributor

to androgenetic alopecia (Randall, 2008). Our findings have

direct implications toward understanding the pathological

mechanisms that underlie such hair loss and identify an endog-

enous source of cells that may be targeted to restore DP

numbers and reverse hair follicle growth arrest.

EXPERIMENTAL PROCEDURES

In Vivo Lineage Tracing

Fate mapping of adult HF DS cells was achieved by crossing aSMACreERT2

mice (Wendling et al., 2009) with a ROSAeYFP reporter strain or to theBrainbow

2.0 strain (‘‘confetti’’; both from Jackson Laboratories). Tamoxifen (4-OHT;

Toronto Research Chemicals) was administered by intraperitoneal injection

(1 mg/20 g) or topical application to backskin (5 ml of 100 mg/ml in DMSO)

twice daily on either postnatal day (P) 3 and 4 or at 23 and 24 (early anagen).

EdU (5-ethynyl-20-deoxyuridine) was administered at 100 mg/mouse. For

quantification of aSMACreERT2:ROSAYFP+ve DS cell proliferation and recruit-

ment into the DP, 200 follicles were analyzed per mouse (n = 3–6 mice per

time point). All animal experiments received prior approval of the University

of Calgary Health Sciences Animal Care Committee and were in accordance

with guidelines set by the Canadian Council on Animal Care.

Dermal Stem Cell Ablation Experiments

aSMACreERT2 mice were crossed to ROSAeYFP and ROSAiDTR mice (Jackson

Laboratories). At P3 and P4, pups were given topical application of tamoxifen

(as above) to induce expression of YFP and DTR in backskin HF DS cells. To

avoid any confounding effects of killing vasculature-associated aSMA-

expressing cells, we grafted skin from aSMACreERT2:YFP:iDTR+/� and

aSMACreERT2:YFP:iDTR�/� mice onto adult male Nude mice. Skin grafts

were allowed to heal for 1 month, to allow host revascularization to occur

within the graft (Capla et al., 2006; Matsuo et al., 2007). Diphtheria toxin (DT;

25 ng/g bodyweight, SigmaAldrich) was administered for 3 days, prior to depi-

lation (to synchronize hair regeneration) of the graft and continued for 7 days

following in order to kill DTR-expressing hfDSCs during the transition from tel-

ogen to anagen. Control grafts received either PBS injections (DTR+/�) or DT
injections (DTR�/�). HF regeneration was documented at 0, 10, and 16 days

postdepilation and then hair fiber length and hair type was quantified from
ier Inc.
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plucked hairs (100 hairs/graft, n = 4 controls grafts, n = 9 DT-treated DTR+/�

grafts). Hair length was measured using ImageJ software (NIH).

Immunofluorescence Staining

Antibodies are listed in the Supplemental Experimental Procedures. Skin sam-

ples were either fresh frozen, fixed for 4 hr in 4% paraformaldehyde at 4�C, or
48 hr in 2% paraformaldehyde at 4�C followed by 24 hr in 20% sucrose and

subsequently snap frozen in OCT (Sakura). Image collection and quantification

was done using a Leica SP8 spectral confocal microscope.

Cell Sorting and Cell Culture

Back skin from adult (P26–P28) Sox2EGFP mice (Ellis et al., 2004) or

aSMAdsRed mice (Magness et al., 2004) were dissociated to single cells and

sorted on a FACSAria III (Becton Dickinson) with viable cells identified by Sytox

blue or red (Invitrogen). DPcellswere characterized asSox2:GFP+ve ITGa9+ve to

exclude Sox2-expressing glia cells residing in nerve terminals (Biernaskie et al.,

2009; Clavel et al., 2012). DS cells were characterized as aSMAdsRed+ve and

then stained for anti-CD34 and anti-ITGa8, to negatively select for interfollicular

dermal cells, arrector pilimuscle cells, respectively. Gateswere set according to

single stained positive and negative (isotype) controls. Cells were plated at

10,000 cells/ml and grown as previously described (Biernaskie et al., 2009).

Statistical Analysis

All data are represented as mean ± SEM. Data were analyzed using GraphPad

Prism 6 Software using two-tailed t tests or Kruskal Wallis for nonparametric

data sets. Repeated-measures ANOVA was used to examine the effect of

repeated depilation on YFP+ve DP and DS cell kinetics. Paired t tests were

used for within graft comparisons of hair type and length before and after

DT-mediated depletion. p < 0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.devcel.2014.10.022.
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