Clinical Potential of Hair-Follicle Derived Mesenchymal Cells in Cell Therapy: Multiple Therapeutic Applications <u>Kevin McElwee¹</u>, Rainer Marksteiner², Birte Magnus², Darrell Panich¹, David Hall¹, Hisae Nakamura¹, Rolf Hoffmann¹ ¹Replicel Life Sciences Inc., Vancouver, BC, Canada. ²Innovacell Biotechnologie AG, Innsbruck, Austria. ## **INTRODUCTION** The hair follicle (HF) is a dynamic organ, which undergoes continuous morphogenesis and regeneration via the hair cycle throughout an animal's life. To support this unique characteristic of self-renewal, the HF retains reservoirs of multipotent cells. The dermal mesenchyme compartment of the HF comprises the dermal papilla (DP), a small aggregation cells at the base of the HF bulb; and dermal sheath (DS), which surrounds the bulb and envelops the HF. A specialized group of DS cells that localize at the base of the bulb and supports the growth of the DP is termed the dermal sheath cup (DSC) (Figure 1). Tissue engineering studies have demonstrated that DP and DSC cells play essential roles in hair development, growth and regeneration. Previously, we have demonstrated that cultured DSC cells can stimulate hair growth in mice, and our Phase I data show safety and efficacy in humans. Nonbulbar DS cells (NBDS), in comparison, do not possess HF inductive abilities, but do produce collagen. Exploiting the unique properties of HF cells, we have developed tissue-engineered cell-specific products containing autologous DSC cells or NBDS cells to treat various indications including androgenetic alopecia, tendinosis and aging skin. #### **OBJECTIVES** To assess preclinical safety and efficacy of cultured NBDS cells in treatment of tendinosis and aging skin. # **METHODS AND RESULTS** NBDS cells were isolated from HF samples collected from three independent healthy subjects. Collagen production of NBDS cells in response to mechanical stress was analyzed by immunohistochemistry. Using immunodeficient mice and homologous rabbit models, biodistribution, tolerance and tumorigenicity of cultured human NBDS cells were examined in GLP-compliant *in vivo* studies. The results show that upon application of mechanical force, NBDS cells responded by producing type I collagen in the plane of the stretch and expressed other ECM-proteins including type III collagen and elastin. Our GLP-compliant *in vivo* studies showed that subcutaneously, or intratendon, injected NBDS cells were well tolerated, did not migrate to secondary sites and did not form tumours. Figure 1. Schematic depiction of hair follicle cells Figure 2. Tendon-related protein expression | Human tendon | NBDS | FB | TdC | |----------------------|------|----|-----| | Collagen | | | | | Collagen
Type III | | | | | Biglycan | | | | | Elastin | | | | | Decorin | | | 0 | | Tenas-
cin C | | | | Tendon-related protein expression was compared between plasma-embedded non-bulbar dermal sheath cells (NBDS), dermal fibroblasts (FB) and tendon cells (TdC) after 10-days of linear stretch. ## Table 1. Summary of preclinical safety studies | Study
Purpose | Local Tolerance | Tumorigenicity | Biodistributior | |-------------------|--|--|---| | Objectives | To study
tolerance of
NBDS cells | To test potential of NBDS cells to form tumors | To study
distribution of
NBDS cells
post-injection | | Animal
Model | New Zealand
White
Rabbits (6) | C.B-17 SCID-
beige mice (40).
Positive
control: Hela
adenocarcinoma
cells | C.B-17 SCID-
beige
mice (30) | | Injection
Site | Intra-tendon:
Achilles | Sub-cutaneous | Intradermal
and sub-
cutaneous | | Duration | 5 days | 3 months | 4 weeks | | Analysis | observation and histopathology | observation and histopathology | RT-PCR | | Results | No treatment
related clinical
abnormalities or
mortality: mild
reaction at local
site in both
placebo groups | No abnormal cell
growth or tumor
formation
observed with
NBDS cells | | # CONCLUSIONS Our preclinical studies showed that cultured human NBDS cells express proteins essential in restoring healthy tendon and skin, and our *in vivo* studies confirmed safe application of human DS cells. A Phase I/II clinical trial using NBDS cells for the treatment of tendinosis in humans has been initiated. #### **CONFLICT OF INTEREST** All studies were supported by RepliCel Life Sciences Inc. Vancouver, BC, Canada. www.replicel.com